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A B S T R A C T

Studying older adults with excellent cognitive capacities (Supernormals) provides a unique opportunity for
identifying factors related to cognitive success – a critical topic across lifespan. There is a limited understanding
of Supernormals’ neural substrates, especially whether any of them attends shaping and supporting superior
cognitive function or confer resistance to age-related neurodegeneration such as Alzheimer’s disease (AD). Here,
applying a state-of-the-art diffusion imaging processing pipeline and finite mixture modelling, we longitudinally
examine the structural connectome of Supernormals. We find a unique structural connectome, containing the
connections between frontal, cingulate, parietal, temporal, and subcortical regions in the same hemisphere that
remains stable over time in Supernormals, relatively to typical agers. The connectome significantly classifies
positive vs. negative AD pathology at 72% accuracy in a new sample mixing Supernormals, typical agers, and AD
risk [amnestic mild cognitive impairment (aMCI)] subjects. Among this connectome, the mean diffusivity of the
connection between right isthmus cingulate cortex and right precuneus most robustly contributes to predicting
AD pathology across samples. The mean diffusivity of this connection links negatively to global cognition in
those Supernormals with positive AD pathology. But this relationship does not exist in typical agers or aMCI. Our
data suggest the presence of a structural connectome supporting cognitive success. Cingulate to precuneus white
matter integrity may be useful as a structural marker for monitoring neurodegeneration and may provide critical
information for understanding how some older adults maintain or excel cognitively in light of significant AD
pathology.

1. Introduction

Normal aging is typically characterized by cognitive decline (Park &
Reuter-Lorenz 2009), particularly in processing speed and memory
domains (Brickman & Stern 2009). Typical memory decline is most
evident on tasks of episodic memory (Rönnlund et al 2005), with
multiple studies showing greatest age-related declines after age 60

(Nyberg & Pudas 2019). Despite this, variability in cognitive perfor-
mance, either across cognitive domains or within cognitive domains
across time, also tends to increase with advancing age (Frias et al 2007).
This is perhaps most evident for individuals who do not exhibit the
expected reduction in episodic memory with advanced age. Older
adults with excellent cognition, especially episodic memory, often de-
fined as superior to age-matched counterparts (Supernormals) (Lin et al
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2017a, Mapstone et al 2017) or equivalent to that of younger adults
(Superagers) (Harrison et al 2018, Rogalski et al 2013, Sun et al 2016)
are a powerful model to study cognitive resilience. We choose to use the
Supernormal definition in the current study to minimize cohort differ-
ences such as educational access and exposure to technology that could
affect comparison with younger cohorts. For many Supernormals, su-
perior cognitive performance is maintained over time (Lin et al 2017b),
indicating that this effect is distinct, and not due simply to decline that
remains above a normal cutoff (Fiocco & Yaffe 2010). There is a
growing emphasis in examining biological models of successful cogni-
tive aging in order to understand longevity (Nyberg & Pudas 2019,
Olshansky 2018). We study these older adults with excellent cognition
in order to identify and understand neural mechanisms of cognitive
success that are resistant to the effects of aging and support a healthy
lifespan (a.k.a. health span (Olshansky 2018, Seals et al 2016)).

Supernormals seem to display unique brain functional and struc-
tural profiles that differ from age-matched cognitively normative older
or younger adults. In terms of brain function, Supernormals preserve
stable function of posterior brain regions, the ventral pathway of the
prefrontal cortex, and selected networks (e.g., default mode network,
salience network), and engage bilateral hemispheres (Persson et al
2011, Wang et al 2017, Zhang et al 2020). In terms of brain structure,
Supernormals show preserved cortical thickness or volume of critical
nodes in the default mode network and salience network (Gefen et al
2015, Harrison et al 2012, Rogalski et al 2013, Sun et al 2016). It is
evident that white matter (WM) integrity plays a critical role in sup-
porting and shaping brain function (Monje 2018). Furthermore, varia-
bility in WM integrity has been related to innate cognitive ability
(Schmithorst et al 2005), age-related cognitive decline (Voineskos et al
2012), and neurodegenerative diseases (Medina et al 2006). Cumula-
tive evidence suggests that AD is a connectome disease, and tau spreads
via neuronal connections (Acosta-Cabronero et al., 2010; Dai & He,
2014; Damoiseaux et al., 2009; Delbeuck et al., 2003; Rose et al., 2000).
Deficits in WM connectivity are associated with AD pathology across
cognitive stages, from intact cognition, to MCI and AD (Kim et al 2019,
Lim et al 2014, Mayo et al 2017). Synthesizing these separate lines of
evidence, we suspect that the longitudinal integrity of WM connectivity
is important for supporting successful aging and can predict AD related
outcomes in Supernormals.”

Here, applying a state-of-the-art diffusion imaging processing pi-
peline (Zhang et al 2018), we examined the structural connectome in
cognitively superior older adults (Supernormals, SN) that we previously
identified in the ADNI cohort (Lin et al 2017a, Lin et al 2017b) over a 2-
year period. This longitudinal design enabled us to test whether Su-
pernormals maintain a unique structural connectome that remains
stable over time. In addition, since Alzheimer’s disease (AD) is the most
common neurodegenerative disease, we tested whether WM integrity of
the supernormal structural connectome predicts AD-related outcomes
such as AD pathology, neurodegeneration and global cognition over
2 years.

2. Methods

2.1. Data Source

Data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (ad-
ni.loni.usc.edu). The ADNI was launched in 2003 as a public–private
partnership, led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial magnetic re-
sonance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment can
be combined to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer’s disease (AD). To reduce site related errors,
ADNI group made strict attempts to standardize patient recruitment
and imaging protocols across the different sites. ADNI collects diffusion-

weighted images at 14 sites arcoss North America, all using the same
scanner manufacturer (General Electric), magnetic field strength (3T)
and protocol, including the same voxel size and the number of gradient
directions. The ADNI group also did rigorous quality control and as-
surance of scanners. Each exam underwent a quality control evaluation
at the Mayo Clinic (Rochester, MN, USA). Quality control included in-
spection of each incoming image file for protocol compliance, clinically
significant medical abnormalities, and image quality (Jack et al 2008).

2.2. Participants

All subjects in this study were from ADNI GO and ADNI2 where DTI
data were collected using 3T GE scanners. We developed and validated
the “Supernormal structural connectome” in three steps: identification
of a “Supernormal structural connectome”, internal validation, and
external validation in prodromal AD.

For the first step, we identified a group of older adults without
cognitive impairment (referred to as “Normative” afterwards) [n = 48,
including 24 Supernormals (SNI) and 24 cognitively normative controls
(ACI) with matched age and education] who had DTI data at 2 time
points (2 years apart) from our previous dataset (including 354 older
adults free of dementia/aMCI or major psychiatric disorders over the
course of participation in ADNIGO and ADNI2)(Lin et al 2017b). The
identification of Supernormals and cognitively normative controls was
based on 5-year trajectories of composite episodic memory (EM) and
executive function (EF) scores as described previously (Lin et al 2017b).
In previous analysis, we applied finite mixture models to examine 5-
year trajectories of EM and EF standardized composite scores. Three
latent classes were generated. Supernormal showed significantly dif-
ferent intercept and slope in EM, as well as different slope in EF, from
the other 2 classes. In the current study, SN were selected from the
supernormal class while AC were from the other 2 classes. According to
EF and EM cut-off scores (Crane et al., 2012; Gibbons et al., 2012), a
score above 0 indicates normal cognition and SD = 1. In the current
study, SN and AC are all above 0. These SNI subjects had baseline EM
and EF mean z-scores of 1.60 ± 0.57 and 1.12 ± 0.69, respectively,
compared to 0.95 ± 0.49 and 0.53 ± 0.59 for ACI. These are ap-
proximately 1 standard deviation above the overall normal population
mean, indicating that this SNI group is at or above 84% of the popu-
lation, assuming cognitive scores are normally distributed. SN and AC
also significantly differed in EM and EF across internal and external
validation samples, controlled for age, sex and education (see Table 1).
Among SNI and ACI, we selected participants who had DTI data, CSF Aβ
and pTau data, FDG-PET or global cognition (MOCA) from the same 6-
month window at 2 time points (2 years parts) for internal validation
(step 2). MOCA scores significantly differed between SNI and ACI. There
was no significant difference between SNI and ACI in Aβ/pTau or
composite FDG-PET score at either time point (see Table 1).

For the last step (external validation), we identified a different set of
cognitively non-impaired (n = 24, including 10 SNE and 14 ACE) and
aMCI (a group at high risk for AD, n = 33) participants who had DTI
data at one time point as well as CSF Aβ and pTau data from the same 6-
month window. The diagnoses of aMCI were made by a psychiatrist or
neurologist at each study site and reviewed by a Central Review
Committee based on serial neuropsychological tests (details in Fig. 1).
The three groups (SNE, ACE and aMCI) significantly differed in cogni-
tive performance and AD pathology, controlled for age, sex and edu-
cation (see Table 1).

2.3. Data Acquisition

All participants underwent whole-brain MRI scanning on 3 T GE
scanners. Diffusion-weighted images (DWI) were collected with the
following parameters: matrix size = 256 × 256 mm; flip angle = 90°;
slice thickness = 2.7 mm; 41 diffusion-weighted images (b = 1000 s/
mm2) and 5 non-diffusion-weighted b0 image. T1-weighted spoiled
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Table 1
Sample characteristics.

Identification of “Supernormal structural connectome” and
Internal validation

SNI (N = 24) ACI (N = 24) T, F or χ2 test, df1, df2, (P)

Age baseline, Mean (SD) 72.56 (5.54) 72.71 (3.23) −0.11, 46 (0.91)
Male, N (%) 8 (33) 9 (38) 0.01, 1 (0.76)
Education, Mean (SD) 16.96 (2.73) 15.67 (2.60) 1.68, 46 (0.10)
APOE4 carrier, N (%) 6 (25) 10 (41) 1.50, 1 (0.22)
EM baseline, Mean (SD) 1.60 (0.57) 0.95 (0.49) 15.79, 1, 43 (< 0.001) ξ

EM year 3 Mean (SD) 1.77 (0.49) 0.80 (0.48) 41.52, 1, 43 (< 0.001) ξ

EF baseline, Mean (SD) 1.12 (0.69) 0.53 (0.59) 7.64, 1, 43 (0.008) ξ

EF year 3, Mean (SD) 1.46 (0.55) 0.54 (0.63) 27.87, 1, 43 (< 0.001) ξ

MOCA baseline, Mean (SD) 27.04 (1.88) 25.21 (1.56) 12.87, 1, 43 (0.001) ξ

MOCA year 3, Mean (SD) 27.42 (2.15) 25.00 (2.00), n = 23 11.87, 1, 42 (0.001) ξ

CSF Aβ/pTau ratio baseline, Mean (SD) 4.06 (0.60), n = 18 4.20 (0.60), n = 20 0.39, 1, 33 (0.535) ξ

CSF Aβ/pTau ratio year 3, Mean (SD) 3.86 (0.63), n = 10 3.85 (0.75), n = 10 0.03, 1, 15 (0.818) ξ

positive AD pathology baseline, N (%) 6 (33), n = 18 6 (30), n = 20 0.05, 1 (0.825)
positive AD pathology year 3, N (%) 5 (50), n = 10 5 (50), n = 10 0, 1 (1)
Composite FDG-PET ROI baseline, Mean (SD) 1.37 (0.10) 1.31 (0.12), n = 23 2.29, 1, 42 (0.138) ξ

Composite FDG-PET ROI year 3, Mean (SD) 1.31 (0.07), n = 11 1.27 (0.09), n = 12 0.68, 1, 18 (0.419) ξ

External validation SNE (N = 10) ACE (N = 14) aMCI (N = 33) T, F or χ2 test, df1, df2, (P)
Age baseline, Mean (SD) 74.81 (10.77) 76.00 (6.88) 72.48 (5.78) 1.34, 2, 54 (0.27)
Male, N (%) 6 (60) 7 (50) 21 (64) 0.76, 2 (0.68)
Education, Mean (SD) 16.10 (2.84) 16.57 (2.73) 15.97 (2.89) 0.22, 2, 54 (0.80)
APOE4 carrier, N (%) 2 (20)a 5 (36)a 27 (82)b 16.60, 2 (< 0.001)
EM, Mean (SD) 1.17 (0.29) a 0.72 (0.61) b −0.40 (0.60) c 37.74, 2, 51 (< 0.001)ξ

EF, Mean (SD) 1.14 (1.00) a 0.30 (0.87) b 0.05 (0.91) b, n = 32 7.73 2, 50 (< 0.001)ξ

MOCA, Mean (SD) 25.67 (2.69) a, n = 9 24.92 (2.78) a 21.13 (2.55) b, n = 32 18.28, 2, 49 (< 0.001)ξ

CSF Aβ/pTau ratio, Mean (SD) 4.28 (0.48) a 4.11 (0.59) a 3.22 (0.65) b 19.81, 2, 51 (< 0.001)ξ

positive AD pathology, N (%) 2 (20) a 5 (36) a 27 (82) b 16.60, 2 (< 0.001)

Note: SNI, Supernormals; ACI, average-ager controls (for Identification of “ Supernormal structural connectome” and Internal validation); SNE, Supernormals; ACE,
average-ager controls (for External validation); aMCI, amnesic mild cognitive impairment; APOE4, apolipoprotein E ε4; SD, standard deviation; CSF, Cerebrospinal
fluid; Aβ, Beta-amyloid-(1–42); pTau, phosphorylated tau ;FDG, fluorodeoxyglucose; EM, episodic memory; EF, executive function; MOCA, Montreal Cognitive
Assessment. Aβ/pTau ratio was log transformed because it did not have a normal distribution. ξ Controlled for age, sex and education. a, b, c represents the post-hoc
comparison difference from the F-test. Bold values indicate P < 0.05.

Fig. 1. Sample selection flow chart. Note. DTI, diffusion tensor imaging; aMCI, amnestic mild cognitive impairment; SN, Supernormals; AC, average-ager controls; I,
for Identification of “Supernormal structural connectome” and Internal validation; E, External validation.
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gradient recalled echo sequences were acquired in the same scanning
session (TR = 7.0–7.7 ms, TE = 2.8–3.2, TI = 400 ms, matrix
size = 256 × 256 mm, flip angle = 11°, resolution 1.02 × 1.02 mm,
slice thickness = 1.20 mm). More details on ADNI protocols may be
found at http://adni.loni.usc.edu/methods/documents/mri-protocols/.

2.4. Data Preprocessing

Each raw DWI image was aligned to the average b0 image using the
FSL Eddy Correct tool version 6.0.1 (www.fmrib.ox.ac.uk/fsl) to correct
for head motion and eddy current distortions. Non-brain tissue was
removed using FSL's Brain Extraction Tool (Smith 2002). We then re-
gistered DWI images with the T1 anatomical images using Advanced
Normalization Tools (ANTS; http://www.picsl.upenn.edu/ANTS/).

To extract brain connectome, we employed an established popula-
tion-based structural connectome processing pipeline (Zhang et al
2018). First, we applied reproducible probabilistic tractography algo-
rithm (Girard et al 2014, Maier-Hein et al 2017) to DWI data to gen-
erate streamlines across the whole brain. We used 0.2 mm step size and
25° angle threshold. The average seed number is about 105 voxels.
Then, we used the Desikan atlas to define the Regions of Interest (ROIs)
on T1 anatomical images. The brain of each participant was parcellated
into 87 ROIs (68 cortical and 19 subcortical regions) with FreeSurfer.
For each pair of ROIs, we extracted the streamlines connecting them.
Then, we extracted 2 diffusion metrics from the streamlines to describe
the connection: the mean of MD (mean diffusivity) and the mean of FA
(fractional anisotropy). Another feature we extracted is CSA (connected
surface area) which was proposed to reflect the amount of neurons
connecting two regions (Zhang et al 2018). To calculate CSA, at each
intersection between the surface of an ROI and a streamline, a small
circle with fixed radius is drawn, and the total number of voxels cov-
ered by these circles is the CSA. CSA can be interpreted as the robust-
ness of surface connection between two ROIs, and could be a metric for
the sensitivity of the connection to neurodegeneration, either disease-
related or due to normal aging. For reproducibility of metrics, the po-
pulation-based structural connectome processing pipeline preserves the
geometric information of streamlines and has been shown to extract
much more reliable weighted brain networks, compared with a stan-
dard method from the literature (Zhang et al 2018).

2.5. Statistical analyses

We conducted a 3-step analysis. In the first step - Identification of
“Supernormal structural connectome”, we identified potential candi-
dates for supernormal structural connectome. Numerous studies have
shown that decreased FA and CSA, and increased MD are associated
with AD and worse cognitive abilities (Bozzali & Cherubini 2007, Chua
et al 2008, Nir et al 2013, Zhang et al 2019). Here, we expected to find
a cluster which showed better WM integrity, indexed by higher FA,
higher CSA, and lower MD, in SN than CN, to be the potential super-
normal connectome map. In the second step - the internal validation,
we tested whether the potential supernormal connectome map pre-
dicted AD related outcomes consistently across two time points in
comparison to other clusters. If so, we considered it as the final su-
pernormal connectome. Finally, the external validation validated the
predictive ability of the supernormal connectome in an independent
sample.

2.5.1. Identification of “Supernormal structural connectome”
Only the connections that could be traced in at least 80% of the total

sample at both year 1 and year 3 were included. For each connection
we calculated Z-scores for mean MD, mean FA, and CSA across all
participants (SNI + ACI) and both years. A finite mixture modeling was
conducted using R package, “FlexMix”(Leisch 2004). We used multi-
variate FMM to cluster connections based on the 3 white matter in-
tegrity measures at 2 time points for two groups. Clustering and

estimation of the cluster parameters (intercepts, slopes, and variances)
were performed simultaneously via the EM (Expectation-Maximization)
algorithm. The six outcome variables of interest (MD, FA, CSA for SNI

and ACI, respectively) of each connection and at each time point
t {1, 3}j are modeled as observations drawn from a mixture of K six-
dimensional multivariate normal distributions, with mixture compo-
nent k assumed to have mean + tk k j with R,k k

6, diagonal
covariance matrix with variances , ,k k1

2
6
2 , and mixture probability k

for =k K1, , .
Let y Rij

6 denote the outcomes for connection i at time tj, k de-
note the set of parameters , , , ,k k k k1

2
6
2 for mixture component k,

and f (. )k denote the probability density function for mixture com-
ponent k. After initializing , , K1 and the mixture probabilities

, , K1 , the EM algorithm iterates between two steps: the expectation
step and the maximization step. The expectation step estimates the
posterior probability that connection i belongs to cluster k given the
estimated parameters via the formula

= =

= =

p
f y t

f y t

( , )

( , )ik
k j ij ij k

l
K

l j ij ij l

1
2

1 1
2

for =k K1, , . During the maximization step, mixture prob-
abilities are estimated with the formula

=
=n

p1 ,k i

n
ik1

and estimates for , , K1 are obtained as the maximizers of the
approximate complete-data log-likelihood

= = =
p f y tlog( ( , )).

k

K

i

n
ik j ij ij k1 1 1

2

The expectation and maximization steps are iterated in succession
until convergence of the log-likelihood. The parameter estimates at
convergence were used as the final estimates, and each connection
assigned to the cluster with the maximum posterior probability of
cluster membership. We trained the model with different initialization
of number of clusters K (from 1 to 12). Then we compared Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC) and
log-likelihood as model selection criteria. Lower AIC and BIC and
higher log-likelihood values indicate a better model fit.

2.5.2. Internal validation
The internal validation aimed to test the predictive power of the

potential “Supernormal structural connectome” on AD related outcome,
including AD pathology, neurodegeneration and global cognition,
where FA, MD or CSA as predictor. As a comparison, we also tested the
predictive power of the other five clusters.

AD pathology was measured by the ratio of Aβ and pTau, which was
considered as the “AD signature” for which lower Aβ/pTau ratio in-
dicated an increased burden of AD pathology. Aβ and pTau value were
derived from CSF (Shaw et al 2009), and log transformed to approx-
imate a normal distribution. Neurodegeneration was measured by FDG-
PET, which was highly specific neurodegenerative imaging biomarker
in AD. We generated a composite FDG score by averaging across five
ROIs: right and left angular gyri, middle/inferior temporal gyrus, and
bilateral posterior cingulate gyrus based on previous procedure (Jagust
et al 2010). Global cognition was measured using the MOCA (Rossetti
et al 2011). Here we chose MOCA as the cognitive measure since this
measure was not included in the development of composite EM and EF
scores that were used for characterizing Supernormals.

For each cluster, we used white matter integrity measures of each
connectome at baseline as features (predictors), to predict AD pa-
thology (CSF Aβ/pTau ratio), neurodegeneration (FDG-PET) and global
cognition (MOCA) at both baseline (year 1) and 2-year follow-up (year
3) for the total sample (SNI + ACI). During regression, feature vectors
were Z-transferred across subjects to ensure similarity of ranges for
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feature values and comparable contribution of each feature to the final
regression from both training and test sets (Chang & Lin 2011). Nor-
malization was also performed on response variables. We employed
support vector regression (SVR) with the linear kernel (Hsu and Lin,
2003) using Matlab. We chose linear kernel because it’s easy to inter-
pret the feature weights (e.g., which connection contributes most). We
didn’t use nonlinear kernels since it is difficult to interpret results and
feature weights for SVM nonlinear kernels. Leave-one-out cross-vali-
dation was performed, i.e the classifier was trained on all except one
subject on which testing was to be performed. This leave-one-out va-
lidation process was repeated for all subjects. After regression, we
evaluated the results by correlating the observed and predicted out-
comes. The correlation coefficient R was used to estimate goodness of
fit for the model. To control the familywise error rate, we performed a
Bonferroni correction, dividing the critical P value (α) by the number of
clusters (α = 0.05/6 = 0.0083).

2.5.3. External validation
Based on findings from the first two steps, the goal of external va-

lidation was to clinically validate the predictive power of the baseline
MD of “Supernormal structural connectome” (cluster 5) on AD pa-
thology in prodromal AD. Here we extracted MD of cluster 5 from a
separate dataset (24 Normative (10 SNE and 14 ACE) and 33 aMCI). As
with the internal validation, we used Leave-one-out cross-validation
and SVR with the linear kernel to predict Aβ/pTau ratios. Besides, to
ensure the clinical utility of the “Supernormal structural connectome”,
we also performed a classification (positive vs. negative AD pathology)
with leave-one-out cross-validation and linear support vector machine
(SVM). The cut-off for positive AD pathology was based on log-trans-
formed CSF Aβ/pTau ratio < 3.82 (Hansson et al 2018). To evaluate
the classification result, we did 5000 permutations that shuffled the
class labels among the samples. The permutation p-value was reported
as (number of permutation accuracy > true accuracy) / number of
permutations.

3. Results

3.1. Identification of the “Supernormal structural connectome”

Sample selection using ADNIGO and ADNI2, where diffusion ima-
ging data are currently available, is described in Fig. 1. Sample char-
acteristics are presented in Table 1. Data for developing the “Super-
normal structural connectome” (labeled as internal/I sample) was
derived from age- and education-matched SNI (n = 24) and ACI

(n = 24). Using our diffusion imaging pipeline (Zhang et al 2018), we
identified 1150 connections that existed in at least 80% of the total
sample at both year 1 and year 3. We calculated Z-scores for mean FA,
mean MD, and CSA across all subjects at the two time points. We ap-
plied finite mixture modeling (Ram & Grimm 2009), expecting a set of
stable WM connections that are unique to Supernormals (see the
Method section for more details). We analyzed data from all 3 Z-
transformed WM integrity measures for 2 groups (SNI vs. ACI) at 2 time
points (year 1 and year 3) to determine the longitudinal homogenous
subsets of structural connections for the two groups, respectively. We
trained models with different initialization of cluster numbers (from 1
to 12). The algorithm converged and stopped at a 6-cluster solution
with the best model fit, indicated by the lowest AIC, lowest BIC and

highest log-likelihood (Table 2). Thus, the 6-cluster model was used
here. The 2-year trajectories across the WM measures for the 6 clusters
in SNI vs. ACI are displayed in Fig. 2A. The connections within the 6
clusters are visualized in a two-dimensional plane (Fig. 2B). Synthe-
sizing longitudinal characteristics of the 3 WM integrity measures be-
tween groups, Cluster 5 represents the subset of connections with better
integrity for SNI than ACI characterized by initially lower and long-
itudinally stable MD and initially higher and longitudinally stable FA,
and constantly higher CSA. Cluster 6 represents the subset of connec-
tions preferring ACI than SNI, characterized by initially lower and
longitudinally decreased MD and initially higher and longitudinally
increased FA, and initially higher and longitudinally stable CSA in
ACI. FA reflects the directionality of water diffusion through tissue with
higher value associated with greater fiber integrity. ACI show sig-
nificantly higher FA than SNI in Cluster 6, which is opposite to our
expected Supernormal profile. To give a better view of distribution of
these connections across the whole brain, we visualize Cluster 5 and
Cluster 6 in a three-dimensional glass brain (Shen, 2017) (Fig. 3).
Cluster 5 engages subcortical-cortical (except occipital) connections,
dominantly within the same hemisphere, while Cluster 6 engages more
interhemispheric connections in the occipital lobe. The other four
clusters had overall lower MD in SNI than ACI, with inconsistent
findings in FA and CSA. The intercept and slope results of the WM in-
tegrity measures for clusters are presented in Table 3. Based on these
findings, we consider Cluster 5 a potential “Supernormal structural
connectome”.

3.2. Internal validation: Predictive values of the “Supernormal structural
connectome” for AD-related outcomes

For each cluster, we examined the predictive value of the baseline
WM integrity measures (FA, MD, or CSA) for AD pathology (CSF Aβ/
pTau ratio), neurodegeneration (FDG-PET), or global cognition (MOCA)
at two time points for the total sample (SNI + ACI). We considered a
cluster for which an integrity measure can consistently predict an
outcome across two time points, to be the final supernormal structural
connectome. Here we use linear support vector regression (SVR) and
leave-one-out cross validation for each cluster, taking individual con-
nectome integrity values as features to predict individual outcomes in
year 1 and year 3, respectively. The results are displayed in Fig. 4. We
found baseline MD extracted from Cluster 5 significantly predicted Aβ/
pTau ratio at both year 1 (R = 0.645, P < 0.001, significant with
Bonferroni correction) and year 3 (R = 0.584, P = 0.007, significant
with Bonferroni correction). Fig. 5A shows the prediction of Aβ/pTau
ratio in year 1 and year 3 using baseline MD from Cluster 5 for internal
validation. Fig. 5B displays the top 30% features (connections) with the
largest coefficients in absolute value in SVR in year 1 or year 3 that
predict Aβ/pTau ratio.

We evaluated the independent contribution of the WM baseline MD
from Cluster 5 in predicting AD-related pathology, compared to de-
mographic factors. We compared prediction accuracy in two modeling
strategies, namely a full model and a baseline model. For the baseline
model, we used only selective demographic characteristics (i.e., age, sex
and education) as predictors. For the full model, we added baseline MD
from Cluster 5 as predictors in addition to those demographic char-
acteristics. We used the root mean square error (RMSE) to measure the
prediction accuracy – the smaller the RMSE, the better the prediction.

Table 2
AIC, BIC and Log-likelihood values for the Latent Class Analysis.

Model fit indicators One-cluster model Two-cluster model Three-cluster model Four-cluster model Five-cluster model Six-cluster model

AIC −11777.34 −13943.48 −14609.06 −15092.62 −15387.64 −15638.89
BIC −11674.01 −13731.08 −14287.59 −14662.07 −14848.01 −14990.20
Log-likelihood 5906.671 7008.741 7360.532 7621.311 7787.819 7932.446
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Fig. 2. (A) 2-year trajectories across the WM measures for the 6 clusters in SNI vs. ACI. Thick lines indicate mean WM measures of connections for a cluster while
shadows indicate standard deviation. (B) Circle plots of connections for the 6 clusters. Nodes are organized in two semicircles from frontal (12o’clock position) to
occipital (5o’clock position), and the subcortical regions are presented at the bottom of the circle (6o’clock position). The nodes are colored according to the color
lookup table in Freesurfer. Note. MD, mean diffusivity; FA, factional anisotropy; CSA, connected surface area; F, frontal; C, cingulate; P, parietal; T, temporal; O,
occipital; S, subcortical. The names and the corresponding abbreviations of nodes can be found in Supplemental table.
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Let Ψf denote the RMSE of the full model and Ψb for the baseline model.
The prediction improvement of the full model over the baseline model
was calculated as (Ψb - Ψf)/ Ψb. Adding baseline MD from cluster 5
improved the prediction of CSF Aβ/pTau ratio by 32% (permutation p-
value = 0.003) and 21% (permutation p-value = 0.02) for year 1 and
year 3, respectively. Structural connectome improved the prediction of
AD pathology beyond that of just age, sex and education, which further
supports the possibility of Cluster 5 MD values as a “Supernormal
structural connectome”.

3.3. External validation: Predictive values of the “Supernormal structural
connectome” for AD pathology in prodromal AD

Since the most valuable subset of WM connections for predicting
AD-related outcomes was the Supernormals’ stable connections, MD
values of which predict AD pathology, the external validation focused
on clinically validating the predictive value of the “Supernormal
structural connectome” in separate AD-related context. We used a
combined sample (labeled as external/E sample) of SNE, ACE, and aMCI
here for the purpose of early detection of the prodromal stage of AD
(sample is described in Fig. 1, sample characteristics are presented in
Table 1). With SVR and leave-one-out cross validation, MD extracted
from the “Supernormal structural connectome” significantly predicted
Aβ/pTau ratio (R = 0.529, P < 0.001). Fig. 5C presents prediction of
Aβ/pTau ratio with MD from the “Supernormal structural connectome”
for the external validation cohort. Fig. 5D displays the top 30% of the
features contributing to predicting Aβ/pTau ratio based on absolute
value of coefficients in SVR.

In addition, to ensure the clinical utility of the “Supernormal
structural connectome”, we also used positive vs. negative AD pa-
thology as the outcome, based on a log-transformed CSF Aβ/pTau ratio
of 3.8237. With linear support vector machine (SVM) and leave-one-out
cross validation, we found the “Supernormal structural connectome”
classified participants with positive vs. negative AD pathology sig-
nificantly above chance (accuracy = 72%, sensitivity = 78%, specifi-
city = 62%, permutation p-value < 0.001). To evaluate the in-
dependent contribution of MD of Cluster 5 in classifying AD pathology
compared to demographic factors, we also compared a full model to a
baseline model where only selective demographic characteristics (i.e.,
age, sex and education) were used as predictors. Let Ψf denote (1-
classification accuracy) of the full model and Ψb for the baseline model.
The prediction improvement of the full model over the baseline model
was calculated as (Ψb - Ψf)/ Ψb. Adding baseline MD from cluster 5
significantly improved the classification of positive vs. negative AD
pathology by 59% (permutation p-value = 0.001).

3.4. Interpretation of the “Supernormal structural connectome”

There are 194 connections within the “Supernormal structural
connectome”, which involve all lobes and both hemispheres (Fig. 2
Cluster 5 brain map), making the identification of therapeutic targets
difficult. We therefore focused on connections within the “Supernormal

structural connectome” that were most relevant to AD pathology.
Synthesizing the top 30% of connections in the “Supernormal structural
connectome” from both internal (Fig. 5B) and external (Fig. 5D) vali-
dations with the largest absolute values of feature weights for AD pa-
thology predictions, we identified a single connection linking the right
isthmus cingulate cortex (ISTC) and right precuneus, which showed
higher MD for AC (ACI + ACE) compared to SN (SNI + SNE) (t(70) = -
1.53, P = 0.06) (Fig. 6A). Scatterplots of the correlation between the
right ISTC-precuneus connection’s MD value and AD pathology for the
entire sample are presented in Fig. 6B (partial correlation R = -0.333,
P = 0.001, controlled for age, sex and education; raw R = -0.382,
P < 0.001).

Several seemingly contradictory findings were observed: (1) al-
though there was a trend, Supernormals (SNI + SNE) did not sig-
nificantly differ from age-matched cognitively normative controls
(ACI + ACE) on AD pathology (F(1,57) = 2.717, P = 0.105, controlled
for age, sex and education); (2) Supernormals (SNI + SNE) had sig-
nificantly better global cognition (MOCA) than age-matched cogni-
tively normative controls (ACI + ACE) (F(1,66) = 8.072, P = 0.006,
controlled for age, sex and education); (3) the “Supernormal structural
connectome” did not directly predict global cognition (Internal vali-
dation); and (4) the “Supernormal structural connectome” significantly
predicted AD pathology (both internal and external validation). Finally,
we investigated mapping the relationships between the “Supernormal
structural connectome”, AD pathology, and global cognition, com-
bining samples from internal and external validation. For Supernormals
(SNI + SNE), there was a significantly negative relationship between
MD in the right ISTC-precuneus and MOCA among individuals with
positive AD pathology (partial correlation Rpc = -0.885, P = 0.023,
controlled for age, sex and education; raw R = -0.699, P = 0.032), but
not those with negative AD pathology (Fig. 6C left). For age-matched
cognitively normative controls (ACI + ACE) and aMCI, we didn’t see
this pattern (Fig. 6C middle and right). Therefore, the longitudinal
stable right ISTC-precuneus connection may protect cognition in SNs
with positive AD pathology, which may be a mechanism explaining
Supernormals’ resistance to AD pathology while maintaining excellent
cognition.

4. Discussion

Here we reveal a unique WM structural connectome that is stable
and intact for older adults with superior cognition. Baseline MD reliably
predicts AD pathology over time using an internal validation sample of
cognitively intact individuals, as well as classifies AD pathology using
an external validation sample of mixed cognitively intact and abnormal
individuals. Within this map, the most distinguishing connection is
between the right ISTC and precuneus. Importantly, a significant re-
lationship between the MD of this connection and cognition is only
observed among Supernormals with positive, but not negative, AD pa-
thology. We previously identified a stable functional brain map that is
unique to Supernormals (Wang et al 2017). The finding of a stable and
unique Supernormal structural connectome that is resistant to AD

Fig. 3. Glass brain plots of the Cluster 5 and Cluster 6. Note. L, left; R, right.
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pathology further strengthens the value of studying biological me-
chanisms underlying Supernormals for understanding successful cog-
nitive aging.

The WM processing pipeline constructs reliable fiber orientation
distribution functions from diffusion MRI data, segments brain tissues,
performs anatomy-constrained tractography reconstruction, and ex-
tracts connectome matrices (Zhang et al 2018). The Supernormal
structural connectome (Cluster 5) contains connections between
frontal, cingulate, parietal, temporal, and subcortical regions in the
same hemisphere. The subcortical and allocortex regions (e.g., basal
ganglia, hippocampus, thalamus, etc.) are critical in transporting neu-
rotransmitters (e.g., dopamine, GABA) to cortical regions. While the
specific neurotransmitters participating in the process need to be fur-
ther determined, the integrity of these cortical-subcortical connections
may ensure adaptive neuroplasticity (e.g., rewarding process (Russo &
Nestler 2013)) through neurotransmission to resist AD pathology. Also,
anterior regions, as well as the connections between anterior and pos-
terior regions, are heavily involved in the Supernormal structural
connectome. These characteristics align with previous studies showing
Supernormals or Superagers having greater cortical volumes in the
anterior regions while stronger functional connections between anterior
and posterior regions, compared to average-agers or younger adults
(Gefen et al 2015, Harrison et al 2012, Lin et al 2017a, Rogalski et al
2013). Conversely, Cluster 6 (the set with lower MD and higher FA
among ACs) engages more interhemispheric connections within the
occipital lobe. This phenomenon may be explained by the brain’s
compensatory sensory enhancement (in this case, visual function), not
only functionally, but also microstructurally, in the typical aging pro-
cess (Cabeza 2002, Reuter-Lorenz & Park 2010). Notably, among a few
selected WM integrity measures, the most distinguishable findings in
the Supernormal structural connectome are from MD. Previous studies
have shown that MD is more sensitive than FA to WM alterations as-
sociated with aMCI (Yu et al 2017) and AD (Jin et al 2017), with MD
also predicting conversion to dementia (Fellgiebel et al 2006, Müller
et al 2007). Physiologically, the absolute diffusion, which is quantified
by MD, is a more sensitive marker of neurodegeneration than FA, which
simply quantifies the anisotropy of the diffusion tensor (Acosta-
Cabronero et al 2010). These results reinforce the elevated relevance of
MD in cognitive aging.

Similar to previous studies (Baran & Lin 2018), overall AD pa-
thology did not differ between Supernormals and age-matched cogni-
tively normative controls. However, higher Supernormal structural
connectome integrity, especially the lower MD in right ISTC-precuneus
connection, is associated with future lower AD pathology. This finding
is consistent with previous results showing preservation of posterior
cingulate cortex in Superagers compared to typical older adults as well
as other critical nodes in the default mode network and salience net-
work (Harrison et al 2018, Sun et al 2016, Zhang et al 2020). Moreover,
Supernormals with lower MD in right ISTC-precuneus connection tend
to have better cognition, which is only observed in those with positive,
but not negative AD pathology. However, such relationships do not
exist in age-matched cognitively normative control or aMCI groups.
Amyloid plaques deposit on WM connections (esp. axons), disrupting
WM integrity (Song et al 2004). While there is no difference in the
whole brain average amyloid deposition, our previous cerebral amyloid
work coherently revealed that right ISTC is the only region immune to
amyloid plaque deposition among Supernormals relative to age-mat-
ched cognitively normative older adults (Baran & Lin 2018). Re-
levantly, these two posterior regions are part of the posterior default
mode network, among the first to degenerate in the AD process (Di
Paola et al 2010). In addition, the unique function of these two regions,
which is not necessarily AD or neurodegeneration related, may also be
involved in explaining this phenomenon. ISTC and precuneus are
among the very few regions sensitive to different major stressful life
events, including chronic stress exposure (Calati et al 2018), psychiatric
disorders (e.g., depression, schizophrenia) (Szymkowicz et al 2016,Ta
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Whitford et al 2014), head trauma (Shin et al 2014), and insomnia (Yu
et al 2018). Together, this connection’s immunity to amyloid deposi-
tion, and/or regulatory capacity over stress/homeostatic regulation
may explain Supernormals cognitive excellence despite the similarity in
overall AD pathology between Supernormals and cognitively normative
older adults.

There is a need for identifying biomarkers for early detection of AD
that can simultaneously predict cognitive trajectories and various AD
pathologies, and are specific for AD. Existing predictors based on multi-
dimensional data at baseline (Bruun et al 2019, Rhodius-Meester et al
2018) are typically focused on clinical progression of dementia and
seem to be limited in linking the cognitive and pathological aspects of
AD (Giorgio et al 2020). Although an association has been demon-
strated between tau and cognitive impairment (Bejanin et al 2017,
Riley et al 2002), studies have largely been correlational and have not
fully characterized this connection. This gap can be largely explained
by the confined focus on understanding risk factors, as opposed to
protective factors. Aging populations are often exposed to hetero-
geneous health conditions that impose secondary adverse effects on
cognition or pathologies, which make the revealed risk factors specific
for certain conditions or groups of individuals. Studying successful
cognitive aging will provide novel insights into the mechanisms in-
volved in protecting cognition against AD pathologies. Enhancing
common protective factors such as the Supernormal structural con-
nectome, especially the right ISTC-precuneus connection, may
strengthen cognition across different conditions in which risk factors
can be too varied to be modified via a common pathway.

5. Next steps and limications

Limitations should be acknowledged. First, of note, consensus on

the definition of the cognitively superior ager group is lacking, given
inconsistencies in the choice of comparison group or cognitive mea-
sures. Superagers are defined as performing at or above average nor-
mative values for individuals in their 50 s and 60 s in the memory
domain, and within average in non-memory domains (Gefen et al
2015). To differentiate, we use the term Supernormals, given our de-
finition is based on stable and excellent cognition over time. Future
studies do need to compare brain profiles between the two definitions
to eventually determine whether a unified definition should be used or
phenotypes should be developed.

Second, the revealed 194 structural connections in the
“Supernormal structural connectome” map helps narrow down the re-
levant structural connections for predicting cognitive trajectories
against AD pathology from approximately 1000 connections, providing
a decent set of candidate connections for future validation studies. The
study here focuses on identifying a novel brain biomarker. Before
moving to determine this map’s therapeutic value, the relationship
between the “Supernormal structural connectome” and global cognition
needs to be further tested in larger samples. This will help further de-
termine whether ISTC-precuneus connection or others from the “su-
pernormal structural connectome” protects global cognition from AD
pathology.

In addition, the b-value of 1000 s/mm2 and the scan resolution of
2.7 mm are not optimal for tractography. Higher signal-to-noise ratio
and better spatial resolution with a fairly high b value should be con-
sidered in the future studies (Tournier et al 2004, Tournier et al 2008).
The current study is focused on the WM integrity indexed by MD, FA
and CSA, which do not directly reflect the exact microstructural
changes (Delouche et al 2016). Moreover, brain aging is also accom-
panied by other mechanisms, e.g., decline in grey matter volume and
decrease in synapses and level of neurotransmitters. Future studies can

Fig. 4. Outcome predictions using WM measures from the 6 clusters combining the sample of SNI and ACI. Red asterisks indicate Bonferroni adjusted statistical
significance of P < 0.05. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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explore relationships between the supernormal connectome map and
these mechanisms.

A critical next step from the current study is to comprehensively
examine brain function and structure among Supernormals.
Supernormals show longitudinally stable brain function similar to
younger adults, most evident by the well-preserved posterior brain re-
gions. Moreover, Supernormals’ unique brain function and structure
patterns are linked to their cognitive excellence directly (function) or
indirectly (structurally via the right ISTC-precuneus connection). This
indicates the different, maybe complementary, roles of brain function
and structure in supporting excellent cognition. Meanwhile, stress
regulation among Supernormals may be an important aspect to further
pursue. Our previous study suggests Supernormals have lower oxidative
stress burden and inflammation (Mapstone et al 2017). It is unclear if
the Supernormal maps, especially the structure and function of the right
ISTC-precuneus, are related to these metabolic differences. Lastly, since
several studies from our group has been conducted using ADNI, these
results should be validated in other datasets to avoid any sample bias.

6. Significance Statement

Cognitive aging is a major public concern. Yet some older adults,
known as Supernormals, maintain cognitive superiority. Characterizing
the neural profile of Supernormals may help identify therapeutic targets
for cognitive aging. Here, studying a longitudinal cohort of
Supernormals with a cutting-edge structural connectome processing
pipeline, we find a structural connectome-based early biomarker to
predict AD progression and explain a potential neural mechanism

protecting cognition in the presence of AD pathology.
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